Enhanced inflow and outflow rates despite lower IOP in bestrophin-2-deficient mice.
نویسندگان
چکیده
PURPOSE Bestrophin-2 (Best2), a putative Cl(-) channel is expressed in the nonpigmented epithelium (NPE). Disruption of Best2 in mice results in a diminished intraocular pressure (IOP). Aqueous humor dynamics were compared in Best2(+/+) and Best2(-/-) mice, to better understand the contribution of Best2 to IOP. METHODS Measurements of IOP, episcleral venous pressure (EVP), conventional outflow facility (C(t)), aqueous humor production (F(a)), and anterior chamber volume (V(a)) were made using anterior chamber cannulation. Conventional (F(c)) and uveoscleral outflow (F(u)), and rate of aqueous humor turnover, were calculated from measured data. The anterior chamber was examined in live mice by optical coherence tomography (OCT) and postmortem by light microscopy. RESULTS IOP in Best2(-/-) mice was lower compared with Best2(+/+) littermates. EVP was unchanged. Since Best2 is expressed in NPE cells, the hypothesis was that Best2 is involved in generating aqueous flow. However, F(a) in Best2(-/-) mice was increased by approximately 73% compared with Best2(+/+) mice. This was accompanied by increases in F(c) and F(u). Aqueous humor turnover was enhanced more than twofold in Best2(-/-) mice. No evidence of developmental structural changes was noted. CONCLUSIONS Best2 appears to antagonize the formation of aqueous humor and cause an inhibition of both F(c) and F(u), despite being expressed only in NPE cells. These data support the hypothesis that the inflow and outflow pathways communicate via soluble agents present in the aqueous humor and implicate Best2 as a critical mediator of that communication.
منابع مشابه
Noninvasive assessment of aqueous humor turnover in the mouse eye.
PURPOSE To develop a noninvasive test for monitoring changes in aqueous humor turnover in the mouse eye. METHODS After topical instillation of fluorescein, the rate of decay of fluorescence from aqueous humor and cornea was monitored in Black Swiss, C57 Bl6, and DBA 2J mice with a microscope equipped with epifluorescence and a charge-coupled device (CCD) camera. RESULTS The rate of decay of...
متن کاملMechanisms of ATP release, the enabling step in purinergic dynamics.
The only effective intervention to slow onset and progression of glaucomatous blindness is to lower intraocular pressure (IOP). Among other modulators, adenosine receptors (ARs) exert complex regulation of IOP. Agonists of A(3)ARs in the ciliary epithelium activate Cl(-) channels, favoring increased formation of aqueous humor and elevated IOP. In contrast, stimulating A(1)ARs in the trabecular ...
متن کاملBestrophin-2 is involved in the generation of intraocular pressure.
PURPOSE The bestrophin family of proteins has been demonstrated to generate or regulate Ca2+-activated Cl(-) conductances. Mutations in bestrophin-1 (Best1) cause several blinding eye diseases, but little is known about other bestrophin family members. This study involved disruption of the Best2 gene in mice. METHODS The mouse Best2 gene was disrupted by replacing exons 1, 2, and part of exon...
متن کاملThe Impact of Financial Sanctions on Capital Inflow and Outflow (case of Iran)
The paper aims to examine the impact of financial sanctions on capital inflow and outflow in Iran. The research question is about examining the effect of financial sanctions on FDI inflow and capital outflow in Iran. We used the intervention model as an econometric method to estimate the impact during 2005-2019. The paper discussed three periods. From 2005 to 2010, severe financial sanctions ne...
متن کاملGenetic Deletion of the NOS3 Gene in CAV1-/- Mice Restores Aqueous Humor Outflow Function.
Purpose The purpose of this study was to investigate the impact of genetic deletion of NOS3 in CAV1-/- mice on aqueous humor outflow function using a mouse genetic double knockout model (DKO, NOS3-/- CAV1-/-). Methods IOP was measured in DKO, NOS3 KO, CAV1 KO, and wild-type (WT) mice by rebound tonometry. Outflow facility was measured by perfusing enucleated mouse eyes at multiple pressure st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 50 2 شماره
صفحات -
تاریخ انتشار 2009